Plot populations values against species values
plotSpVar.Rd
Plot populations values against species values. The objectif is to see the contribution of intra-specific vs inter-specific variation to trait gradient.
Usage
plotSpVar(traits = NULL, ind.plot = NULL, sp = NULL, variable = NULL,
col.ind = rgb(0.5, 0.5, 0.5, 0.5), col.pop = NULL, col.sp = NULL,
col.site = NULL, resume = FALSE, p.val = 0.05, min.ind.signif = 10,
multipanel = TRUE, col.nonsignif.lm = rgb(0, 0, 0, 0.5),
col.signif.lm = rgb(1, 0.1, 0.1, 0.8), silent = FALSE)
Arguments
- traits
Individual Matrix of traits with traits in columns.
- ind.plot
Factor defining the name of the plot in which the individual is.
- sp
Factor defining the species which the individual belong to.
- variable
A matrix of variables corresponding to each site (in rows) and each trait (in columns). If you want to plot all traits against one variable, variable can be a vector of numerical values.
- col.ind
Color for individual values.
- col.pop
Color for populational mean values.
- col.sp
Color for species mean values.
- col.site
Color for sites mean values.
- resume
Logical, if TRUE plot a simple form of the plot.
- p.val
Choosen p.value to print significant linear relationship using linear model. Argument past to the lm funtion internally.
- min.ind.signif
Minimum individual to print significant linear relationship.
- multipanel
Logical value. If TRUE divides the device to shown several traits graphics in the same device.
- col.nonsignif.lm
Color for non significant linear relationship.
- col.signif.lm
Color for significant linear relationship.
- silent
Logical value, if resume = FALSE do not print warning argument.
Examples
data(finch.ind)
#Random variable for this example
variable <- c(1,5,15,6,3,25)
if (FALSE) { # \dontrun{
plotSpVar(traits.finch, ind.plot.finch, sp.finch, variable,
silent = TRUE)
#If we change the value of the threshold
#(alpha = 10% instead of 5%
#and the minimum individual to represent significativity
#fixed to 3 instead of 10 by default)
#we can see some significant relationships.
plotSpVar(traits.finch, ind.plot.finch, sp.finch, variable,
p.val = 0.1, min.ind.signif = 3, silent = TRUE)
#For a more simple figure, add the option resume = TRUE.
#Again if we change the value of the threshold
#(alpha = 10% instead of 5%
#and the minimum individual to represent significativity
# fixed to 3 instead of 10 by default)
#we can see some significant relationships.
plotSpVar(traits.finch, ind.plot.finch, sp.finch, variable,
silent = TRUE, resume = TRUE, col.pop = "grey")
plotSpVar(traits.finch, ind.plot.finch, sp.finch, variable,
silent = TRUE, resume = TRUE, col.pop = "grey", col.sp = "black")
plotSpVar(traits.finch, ind.plot.finch, sp.finch, variable,
silent = TRUE, resume = TRUE, col.pop = "grey", col.sp = "black",
p.val = 0.1, min.ind.signif = 3)
} # }