Test binomial on MiteMap for presence in the half part of the odor
binom_test_mitemap.Rd
Test binomial on MiteMap for presence in the half part of the odor
Usage
binom_test_mitemap(
MiteMap,
factor = NULL,
format = "HH",
verbose = TRUE,
p.adjust_method = "BH",
level = "run",
alternative = "two.sided"
)
Arguments
- MiteMap
(required) The result of import_mitemap
- factor
(required, default NULL) The column name to separate individuals in the MiteMap data frame (e.g., "Treatment").
- format
(default "HH") The format of
left
area. "HH" for Half-Half, "CH" for Circular-Half.- verbose
(Logical, default = TRUE) If TRUE, the function print additional information.
- p.adjust_method
(default "BH") method for p-adjustement. See
stats::p.adjust()
.- level
(default "run") The level of analysis. "run" to consider each run (File_name) as one replicate. "lines" to consider each line (i.e. each temporal point) of MiteMap as one replicate. The level run is more conservative as it considers that each run is one independent replicate. Use level "lines" carefully as it introduce a high pseudoreplication risk.
- alternative
(default "two.sided") The alternative hypothesis to test. See
stats::binom.test()
.
Details
The test is run for each factor values with a p-adjustement step. For each run (filename), the proportion of points in the left half is calculated. If the proportion is superior to 0.5, the run is considered as "in left", else "in right". Then a binomial test is run to test if the proportion of runs "in left" is significantly different from 0.5 for each levels of the factor. If format is "CH", the same process is done but for presence in the circular half rather than a half part.
If level is "lines", each line of MiteMap is considered as one replicate (i.e. the proportion of points in left half is calculated for each line of MiteMap). This approach is not recommended as it introduce a high pseudoreplication risk.
Examples
binom_test_mitemap(MM_data, factor = "Treatment")
#> Warning: There were 48 warnings in `summarise()`.
#> The first warning was:
#> ℹ In argument: `across(...)`.
#> ℹ In group 75: `File_name = "MM012022_05_17_15h29m25s"`.
#> Caused by warning in `min()`:
#> ! no non-missing arguments to min; returning Inf
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 47 remaining warnings.
#> # A tibble: 3 × 8
#> Treatment n yes no p.value p.value.adj estimate CI
#> <chr> <int> <int> <int> <dbl> <dbl> <dbl> <chr>
#> 1 DCM 10 5 5 1 1 0.5 0.187 - 0.813
#> 2 Mix 96 54 42 0.261 0.392 0.562 0.457 - 0.664
#> 3 nothing 120 75 45 0.008 0.024 0.625 0.532 - 0.712
binom_test_mitemap(MM_data, factor = "Treatment", format = "CH")
#> Warning: There were 48 warnings in `summarise()`.
#> The first warning was:
#> ℹ In argument: `across(...)`.
#> ℹ In group 75: `File_name = "MM012022_05_17_15h29m25s"`.
#> Caused by warning in `min()`:
#> ! no non-missing arguments to min; returning Inf
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 47 remaining warnings.
#> # A tibble: 3 × 8
#> Treatment n yes no p.value p.value.adj estimate CI
#> <chr> <int> <int> <int> <dbl> <dbl> <dbl> <chr>
#> 1 DCM 10 5 5 1 1 0.5 0.187 - 0.813
#> 2 Mix 96 71 25 0.00001 0.000015 0.74 0.64 - 0.824
#> 3 nothing 120 90 30 0.00001 0.000015 0.75 0.663 - 0.825
binom_test_mitemap(MM_data, factor = "Treatment", level = "lines")
#> Warning: There were 48 warnings in `summarise()`.
#> The first warning was:
#> ℹ In argument: `across(...)`.
#> ℹ In group 75: `File_name = "MM012022_05_17_15h29m25s"`.
#> Caused by warning in `min()`:
#> ! no non-missing arguments to min; returning Inf
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 47 remaining warnings.
#> # A tibble: 3 × 8
#> Treatment n yes no p.value p.value.adj estimate CI
#> <chr> <int> <int> <int> <dbl> <dbl> <dbl> <chr>
#> 1 DCM 10 6416 7611 0.00001 0.00001 0.457 0.449 - 0.466
#> 2 Mix 96 62156 72749 0.00001 0.00001 0.461 0.458 - 0.463
#> 3 nothing 120 78416 91702 0.00001 0.00001 0.461 0.459 - 0.463
MM_data |>
filter(Biomol_sp %in% c("DGSS", "DGL1", "D_carpathicus")) |>
binom_test_mitemap(factor = "Biomol_sp")
#> Warning: There were 6 warnings in `summarise()`.
#> The first warning was:
#> ℹ In argument: `across(...)`.
#> ℹ In group 53: `File_name = "MM012022_05_18_00h25m45s"`.
#> Caused by warning in `min()`:
#> ! no non-missing arguments to min; returning Inf
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 5 remaining warnings.
#> # A tibble: 3 × 8
#> Biomol_sp n yes no p.value p.value.adj estimate CI
#> <chr> <int> <int> <int> <dbl> <dbl> <dbl> <chr>
#> 1 DGL1 18 13 5 0.096 0.288 0.722 0.465 - 0.903
#> 2 DGSS 59 34 25 0.298 0.388 0.576 0.441 - 0.704
#> 3 D_carpathicus 12 8 4 0.388 0.388 0.667 0.349 - 0.901