Plot SES values against a variable
plotSESvar.Rd
Plot standardized effect size values against a variable
Usage
plotSESvar(index.list, variable = NULL, ylab = "variable",
color.traits = NULL, val.quant = c(0.025, 0.975), resume = FALSE,
multipanel = TRUE)
Arguments
- index.list
A list of index and the associate null models in the forme: list( index_1 = index_1_observed, index_1_nm = null.model.index_1 ,index_2 = index_2_observed, index_2_nm = null.model.index_2, ...).
- variable
The variable against standardized effect sizes are plotted.
- ylab
Label for the variable.
- color.traits
A vector of colors corresponding to traits.
- val.quant
Numeric vectors of length 2, giving the quantile to calculation confidence interval. By default val.quant = c(0.025,0.975) for a bilateral test with alpha = 5%.
- resume
Logical value; resume = FALSE by default; Simplify the plot by plotting the mean and standard error for index value of multiple traits
- multipanel
Logical value. If TRUE divides the device to shown several traits graphics in the same device.
Examples
data(finch.ind)
res.finch <- Tstats(traits.finch, ind.plot = ind.plot.finch, sp = sp.finch,
nperm = 9)
#> Warning: This function exclude 1137 Na values
#> [1] "creating null models"
#> [1] "8.33 %"
#> [1] "16.67 %"
#> [1] "25 %"
#> [1] "33.33 %"
#> [1] "41.63 %"
#> [1] "49.97 %"
#> [1] "58.3 %"
#> [1] "66.63 %"
#> [1] "74.93 %"
#> [1] "83.27 %"
#> [1] "91.6 %"
#> [1] "99.93 %"
#> [1] "calculation of Tstats using null models"
#> [1] "8.33 %"
#> [1] "16.67 %"
#> [1] "25 %"
#> [1] "33.33 %"
#> [1] "41.63 %"
#> [1] "49.97 %"
#> [1] "58.3 %"
#> [1] "66.63 %"
#> [1] "74.93 %"
#> [1] "83.27 %"
#> [1] "91.6 %"
#> [1] "99.93 %"
if (FALSE) { # \dontrun{
par(mfrow = c(2,2))
species.richness <- table(ind.plot.finch)
plotSESvar(as.listofindex(list(res.finch)), species.richness,
multipanel = FALSE)
#Same plot with resume = TRUE.
par(mfrow = c(2,2))
plotSESvar(as.listofindex(list(res.finch)), species.richness,
resume = TRUE, multipanel = FALSE)
par(mfrow = c(1,1))
} # }