Skip to contents

This tutorial explore a phyloseq version of the dataset from Tengeler et al. (2020) available in the mia package.

Import dataset in phyloseq format

data(Tengeler2020_pq)
ten <- Tengeler2020_pq
summary_plot_pq(ten)

Alpha-diversity analysis

hill_pq(ten, "patient_status", one_plot = TRUE)

res_inext <-
  iNEXT_pq(ten,
    datatype = "abundance",
    merge_sample_by = "patient_status_vs_cohort",
    nboot = 5
  )
ggiNEXT(res_inext)

accu_plot(
  ten,
  fact = "sample_name",
  add_nb_seq = TRUE,
  by.fact = TRUE,
  step = 100
) + theme(legend.position = c(.8, .6))
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 9
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 17
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 25
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 7
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 8
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 6
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 14
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 28
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 7
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 2
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 15
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 5
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 5
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 6
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 4
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 6
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 21
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 5
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 13
#> Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
#> 3.5.0.
#>  Please use the `legend.position.inside` argument of `theme()` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).

Explore taxonomy

# library(metacoder)
# heat_tree_pq(
#   ten,
#   node_size = n_obs,
#   node_color = nb_sequences,
#   node_label = taxon_names,
#   tree_label = taxon_names,
#   node_size_trans = "log10 area"
# )
treemap_pq(ten, lvl1 = "Order", lvl2 = "Family")

Beta-diversity analysis : effect of patient status and cohort

circle_pq(ten, "patient_status")

upset_pq(ten, "patient_status_vs_cohort")

ggvenn_pq(clean_pq(ten, force_taxa_as_columns = TRUE),
  "cohort",
  rarefy_before_merging = TRUE
) +
  theme(legend.position = "none")

ten_control <- clean_pq(subset_samples(ten, patient_status == "Control"))
# p_control <- heat_tree_pq(
#   ten_control,
#   node_size = n_obs,
#   node_color = nb_sequences,
#   node_label = taxon_names,
#   tree_label = taxon_names,
#   node_size_trans = "log10 area"
# )

ten_ADHD <- clean_pq(subset_samples(ten, patient_status == "ADHD"))
# p_ADHD <- heat_tree_pq(
#   ten_ADHD,
#   node_size = n_obs,
#   node_color = nb_sequences,
#   node_label = taxon_names,
#   tree_label = taxon_names,
#   node_size_trans = "log10 area"
# )
#
# p_control + ggtitle("Control") + p_ADHD + ggtitle("ADHD")
knitr::kable(track_wkflow(list(
  "All samples" = ten,
  "Control samples" = ten_control,
  "ADHD samples" = ten_ADHD
)))
nb_sequences nb_clusters nb_samples
All samples 485932 151 27
Control samples 239329 130 14
ADHD samples 246603 142 13
adonis_pq(ten, "cohort + patient_status")
#> Permutation test for adonis under reduced model
#> Permutation: free
#> Number of permutations: 999
#> 
#> vegan::adonis2(formula = .formula, data = metadata)
#>          Df SumOfSqs      R2      F Pr(>F)  
#> Model     3   1.2425 0.18483 1.7383  0.028 *
#> Residual 23   5.4799 0.81517                
#> Total    26   6.7223 1.00000                
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ten@tax_table <- phyloseq::tax_table(cbind(
  ten@tax_table,
  "Species" = taxa_names(ten)
))

biplot_pq(subset_taxa_pq(ten, taxa_sums(ten) > 3000),
  merge_sample_by = "patient_status",
  fact = "patient_status",
  nudge_y = 0.4
)

multitax_bar_pq(ten, "Phylum", "Class", "Order", "patient_status")

multitax_bar_pq(ten, "Phylum", "Class", "Order", "patient_status",
  nb_seq = FALSE, log10trans = FALSE
)

Differential abundance analysis

plot_deseq2_pq(ten,
  contrast = c("patient_status", "ADHD", "Control"),
  taxolev = "Genus"
)
#> Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
#> design formula are characters, converting to factors

LEfSe <- diff_analysis(
  ten,
  classgroup = "patient_status",
  mlfun = "lda",
  ldascore = 2,
  p.adjust.methods = "bh"
)
library(ggplot2)
ggeffectsize(LEfSe) +
  scale_color_manual(values = c(
    "#00AED7",
    "#FD9347"
  )) +
  theme_bw()

Session information

sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Debian GNU/Linux 12 (bookworm)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
#> 
#> locale:
#>  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=fr_FR.UTF-8    
#>  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
#>  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Europe/Paris
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] iNEXT_3.0.1              patchwork_1.3.0          MiscMetabar_0.11.0      
#>  [4] purrr_1.0.2              dplyr_1.1.4              dada2_1.32.0            
#>  [7] Rcpp_1.0.13-1            ggplot2_3.5.1            phyloseq_1.48.0         
#> [10] MicrobiotaProcess_1.16.1
#> 
#> loaded via a namespace (and not attached):
#>   [1] libcoin_1.0-10              RColorBrewer_1.1-3         
#>   [3] shape_1.4.6.1               rstudioapi_0.17.1          
#>   [5] jsonlite_1.8.9              magrittr_2.0.3             
#>   [7] TH.data_1.1-2               modeltools_0.2-23          
#>   [9] farver_2.1.2                rmarkdown_2.29             
#>  [11] GlobalOptions_0.1.2         fs_1.6.5                   
#>  [13] zlibbioc_1.50.0             ragg_1.3.3                 
#>  [15] vctrs_0.6.5                 multtest_2.60.0            
#>  [17] Rsamtools_2.20.0            ggtree_3.12.0              
#>  [19] htmltools_0.5.8.1           S4Arrays_1.4.1             
#>  [21] ComplexUpset_1.3.3          Rhdf5lib_1.26.0            
#>  [23] SparseArray_1.4.8           rhdf5_2.48.0               
#>  [25] gridGraphics_0.5-1          sass_0.4.9                 
#>  [27] bslib_0.8.0                 htmlwidgets_1.6.4          
#>  [29] desc_1.4.3                  plyr_1.8.9                 
#>  [31] sandwich_3.1-1              zoo_1.8-12                 
#>  [33] cachem_1.1.0                ggfittext_0.10.2           
#>  [35] GenomicAlignments_1.40.0    igraph_2.1.2               
#>  [37] lifecycle_1.0.4             iterators_1.0.14           
#>  [39] pkgconfig_2.0.3             Matrix_1.7-1               
#>  [41] R6_2.5.1                    fastmap_1.2.0              
#>  [43] GenomeInfoDbData_1.2.12     MatrixGenerics_1.16.0      
#>  [45] digest_0.6.37               aplot_0.2.3                
#>  [47] colorspace_2.1-1            ggnewscale_0.5.0           
#>  [49] ShortRead_1.62.0            S4Vectors_0.42.1           
#>  [51] DESeq2_1.44.0               textshaping_0.4.1          
#>  [53] GenomicRanges_1.56.2        hwriter_1.3.2.1            
#>  [55] vegan_2.6-8                 labeling_0.4.3             
#>  [57] fansi_1.0.6                 httr_1.4.7                 
#>  [59] abind_1.4-8                 mgcv_1.9-1                 
#>  [61] compiler_4.4.2              withr_3.0.2                
#>  [63] BiocParallel_1.38.0         ggsignif_0.6.4             
#>  [65] MASS_7.3-61                 DelayedArray_0.30.1        
#>  [67] biomformat_1.32.0           permute_0.9-7              
#>  [69] tools_4.4.2                 ape_5.8                    
#>  [71] glue_1.8.0                  treemapify_2.5.6           
#>  [73] nlme_3.1-166                rhdf5filters_1.16.0        
#>  [75] grid_4.4.2                  cluster_2.1.6              
#>  [77] reshape2_1.4.4              ade4_1.7-22                
#>  [79] generics_0.1.3              gtable_0.3.6               
#>  [81] tidyr_1.3.1                 ggVennDiagram_1.5.2        
#>  [83] data.table_1.16.4           coin_1.4-3                 
#>  [85] utf8_1.2.4                  XVector_0.44.0             
#>  [87] BiocGenerics_0.50.0         ggrepel_0.9.6              
#>  [89] foreach_1.5.2               pillar_1.9.0               
#>  [91] stringr_1.5.1               yulab.utils_0.1.8          
#>  [93] circlize_0.4.16             splines_4.4.2              
#>  [95] treeio_1.28.0               lattice_0.22-6             
#>  [97] deldir_2.0-4                survival_3.7-0             
#>  [99] tidyselect_1.2.1            locfit_1.5-9.10            
#> [101] pbapply_1.7-2               Biostrings_2.72.1          
#> [103] knitr_1.49                  gridExtra_2.3              
#> [105] IRanges_2.38.1              SummarizedExperiment_1.34.0
#> [107] ggtreeExtra_1.14.0          stats4_4.4.2               
#> [109] xfun_0.49                   Biobase_2.64.0             
#> [111] matrixStats_1.4.1           stringi_1.8.4              
#> [113] UCSC.utils_1.0.0            lazyeval_0.2.2             
#> [115] ggfun_0.1.8                 yaml_2.3.10                
#> [117] evaluate_1.0.1              codetools_0.2-20           
#> [119] interp_1.1-6                tibble_3.2.1               
#> [121] ggplotify_0.1.2             cli_3.6.3                  
#> [123] RcppParallel_5.1.9          systemfonts_1.1.0          
#> [125] munsell_0.5.1               jquerylib_0.1.4            
#> [127] GenomeInfoDb_1.40.1         png_0.1-8                  
#> [129] parallel_4.4.2              ggh4x_0.2.8                
#> [131] pkgdown_2.1.1               jpeg_0.1-10                
#> [133] latticeExtra_0.6-30         bitops_1.0-9               
#> [135] ggstar_1.0.4                pwalign_1.0.0              
#> [137] mvtnorm_1.3-2               tidytree_0.4.6             
#> [139] scales_1.3.0                crayon_1.5.3               
#> [141] rlang_1.1.4                 multcomp_1.4-26

References

Tengeler, A.C., Dam, S.A., Wiesmann, M. et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 8, 44 (2020). https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00816-x