Skip to contents

This tutorial explore a phyloseq version of the dataset from Tengeler et al. (2020) available in the mia package.

Load library

library("MicrobiotaProcess")
#> Error in get(paste0(generic, ".", class), envir = get_method_env()) : 
#>   object 'type_sum.accel' not found
library("MiscMetabar")
library("ggplot2")
library("patchwork")
library("iNEXT")
?Tengeler2020

Import dataset in phyloseq format

data(Tengeler2020_pq)
ten <- Tengeler2020_pq
summary_plot_pq(ten)

Alpha-diversity analysis

hill_pq(ten, "patient_status", one_plot = TRUE)

res_inext <-
  iNEXT_pq(ten,
    datatype = "abundance",
    merge_sample_by = "patient_status_vs_cohort",
    nboot = 5
  )
ggiNEXT(res_inext)

accu_plot(
  ten,
  fact = "sample_name",
  add_nb_seq = TRUE,
  by.fact = TRUE,
  step = 100
) + theme(legend.position = c(.8, .6))
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 9
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 17
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 25
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 7
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 8
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 6
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 14
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 28
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 7
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 2
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 15
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 5
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 5
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 6
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 4
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 6
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 3
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 21
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 5
#> Warning in vegan::rarefy(as.matrix(unclass(x[i, ])), n, se = TRUE): most
#> observed count data have counts 1, but smallest count is 13
#> Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
#> 3.5.0.
#>  Please use the `legend.position.inside` argument of `theme()` instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Warning: Removed 1 row containing missing values or values outside the scale range
#> (`geom_line()`).

Explore taxonomy

# library(metacoder)
# heat_tree_pq(
#   ten,
#   node_size = n_obs,
#   node_color = nb_sequences,
#   node_label = taxon_names,
#   tree_label = taxon_names,
#   node_size_trans = "log10 area"
# )
treemap_pq(ten, lvl1 = "Order", lvl2 = "Family")

Beta-diversity analysis : effect of patient status and cohort

circle_pq(ten, "patient_status")

upset_pq(ten, "patient_status_vs_cohort")

ggvenn_pq(clean_pq(ten, force_taxa_as_columns = TRUE),
  "cohort",
  rarefy_before_merging = TRUE
) +
  theme(legend.position = "none")

ten_control <- clean_pq(subset_samples(ten, patient_status == "Control"))
# p_control <- heat_tree_pq(
#   ten_control,
#   node_size = n_obs,
#   node_color = nb_sequences,
#   node_label = taxon_names,
#   tree_label = taxon_names,
#   node_size_trans = "log10 area"
# )

ten_ADHD <- clean_pq(subset_samples(ten, patient_status == "ADHD"))
# p_ADHD <- heat_tree_pq(
#   ten_ADHD,
#   node_size = n_obs,
#   node_color = nb_sequences,
#   node_label = taxon_names,
#   tree_label = taxon_names,
#   node_size_trans = "log10 area"
# )
#
# p_control + ggtitle("Control") + p_ADHD + ggtitle("ADHD")
knitr::kable(track_wkflow(list(
  "All samples" = ten,
  "Control samples" = ten_control,
  "ADHD samples" = ten_ADHD
)))
nb_sequences nb_clusters nb_samples
All samples 485932 151 27
Control samples 239329 130 14
ADHD samples 246603 142 13
adonis_pq(ten, "cohort + patient_status")
#> Permutation test for adonis under reduced model
#> Permutation: free
#> Number of permutations: 999
#> 
#> vegan::adonis2(formula = .formula, data = metadata)
#>          Df SumOfSqs      R2      F Pr(>F)  
#> Model     3   1.2425 0.18483 1.7383  0.028 *
#> Residual 23   5.4799 0.81517                
#> Total    26   6.7223 1.00000                
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ten@tax_table <- phyloseq::tax_table(cbind(
  ten@tax_table,
  "Species" = taxa_names(ten)
))

biplot_pq(subset_taxa_pq(ten, taxa_sums(ten) > 3000),
  merge_sample_by = "patient_status",
  fact = "patient_status",
  nudge_y = 0.4
)

multitax_bar_pq(ten, "Phylum", "Class", "Order", "patient_status")

multitax_bar_pq(ten, "Phylum", "Class", "Order", "patient_status",
  nb_seq = FALSE, log10trans = FALSE
)

Differential abundance analysis

plot_deseq2_pq(ten,
  contrast = c("patient_status", "ADHD", "Control"),
  taxolev = "Genus"
)
#> Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
#> design formula are characters, converting to factors

LEfSe <- diff_analysis(
  ten,
  classgroup = "patient_status",
  mlfun = "lda",
  ldascore = 2,
  p.adjust.methods = "bh"
)
library(ggplot2)
ggeffectsize(LEfSe) +
  scale_color_manual(values = c(
    "#00AED7",
    "#FD9347"
  )) +
  theme_bw()

Session information

sessionInfo()
#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Debian GNU/Linux 12 (bookworm)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0 
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0
#> 
#> locale:
#>  [1] LC_CTYPE=fr_FR.UTF-8       LC_NUMERIC=C              
#>  [3] LC_TIME=fr_FR.UTF-8        LC_COLLATE=fr_FR.UTF-8    
#>  [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=fr_FR.UTF-8   
#>  [7] LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
#>  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
#> [11] LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       
#> 
#> time zone: Europe/Paris
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#>  [1] iNEXT_3.0.1              patchwork_1.3.0          MiscMetabar_0.12.0      
#>  [4] purrr_1.0.2              dplyr_1.1.4              dada2_1.34.0            
#>  [7] Rcpp_1.0.13-1            ggplot2_3.5.1            phyloseq_1.50.0         
#> [10] MicrobiotaProcess_1.16.1
#> 
#> loaded via a namespace (and not attached):
#>   [1] libcoin_1.0-10              RColorBrewer_1.1-3         
#>   [3] shape_1.4.6.1               jsonlite_1.8.9             
#>   [5] magrittr_2.0.3              TH.data_1.1-2              
#>   [7] modeltools_0.2-23           farver_2.1.2               
#>   [9] rmarkdown_2.29              GlobalOptions_0.1.2        
#>  [11] fs_1.6.5                    zlibbioc_1.50.0            
#>  [13] ragg_1.3.3                  vctrs_0.6.5                
#>  [15] multtest_2.60.0             Rsamtools_2.20.0           
#>  [17] ggtree_3.12.0               htmltools_0.5.8.1          
#>  [19] S4Arrays_1.4.1              ComplexUpset_1.3.3         
#>  [21] Rhdf5lib_1.26.0             SparseArray_1.4.8          
#>  [23] rhdf5_2.48.0                gridGraphics_0.5-1         
#>  [25] sass_0.4.9                  bslib_0.8.0                
#>  [27] htmlwidgets_1.6.4           desc_1.4.3                 
#>  [29] plyr_1.8.9                  sandwich_3.1-1             
#>  [31] zoo_1.8-12                  cachem_1.1.0               
#>  [33] ggfittext_0.10.2            GenomicAlignments_1.40.0   
#>  [35] igraph_2.1.2                lifecycle_1.0.4            
#>  [37] iterators_1.0.14            pkgconfig_2.0.3            
#>  [39] Matrix_1.7-1                R6_2.5.1                   
#>  [41] fastmap_1.2.0               GenomeInfoDbData_1.2.12    
#>  [43] MatrixGenerics_1.16.0       digest_0.6.37              
#>  [45] aplot_0.2.3                 colorspace_2.1-1           
#>  [47] ggnewscale_0.5.0            ShortRead_1.62.0           
#>  [49] S4Vectors_0.42.1            DESeq2_1.44.0              
#>  [51] textshaping_0.4.1           GenomicRanges_1.56.2       
#>  [53] hwriter_1.3.2.1             vegan_2.6-8                
#>  [55] labeling_0.4.3              httr_1.4.7                 
#>  [57] abind_1.4-8                 mgcv_1.9-1                 
#>  [59] compiler_4.4.2              withr_3.0.2                
#>  [61] BiocParallel_1.38.0         ggsignif_0.6.4             
#>  [63] MASS_7.3-61                 DelayedArray_0.30.1        
#>  [65] biomformat_1.32.0           permute_0.9-7              
#>  [67] tools_4.4.2                 ape_5.8-1                  
#>  [69] glue_1.8.0                  treemapify_2.5.6           
#>  [71] nlme_3.1-166                rhdf5filters_1.16.0        
#>  [73] grid_4.4.2                  cluster_2.1.6              
#>  [75] reshape2_1.4.4              ade4_1.7-22                
#>  [77] generics_0.1.3              gtable_0.3.6               
#>  [79] tidyr_1.3.1                 ggVennDiagram_1.5.2        
#>  [81] data.table_1.16.4           coin_1.4-3                 
#>  [83] XVector_0.44.0              BiocGenerics_0.50.0        
#>  [85] ggrepel_0.9.6               foreach_1.5.2              
#>  [87] pillar_1.10.0               stringr_1.5.1              
#>  [89] yulab.utils_0.1.8           circlize_0.4.16            
#>  [91] splines_4.4.2               treeio_1.28.0              
#>  [93] lattice_0.22-6              survival_3.7-0             
#>  [95] deldir_2.0-4                tidyselect_1.2.1           
#>  [97] locfit_1.5-9.10             pbapply_1.7-2              
#>  [99] Biostrings_2.72.1           knitr_1.49                 
#> [101] gridExtra_2.3               IRanges_2.38.1             
#> [103] SummarizedExperiment_1.34.0 ggtreeExtra_1.14.0         
#> [105] stats4_4.4.2                xfun_0.49                  
#> [107] Biobase_2.64.0              matrixStats_1.4.1          
#> [109] stringi_1.8.4               UCSC.utils_1.0.0           
#> [111] lazyeval_0.2.2              ggfun_0.1.8                
#> [113] yaml_2.3.10                 evaluate_1.0.1             
#> [115] codetools_0.2-20            interp_1.1-6               
#> [117] tibble_3.2.1                ggplotify_0.1.2            
#> [119] cli_3.6.3                   RcppParallel_5.1.9         
#> [121] systemfonts_1.1.0           munsell_0.5.1              
#> [123] jquerylib_0.1.4             GenomeInfoDb_1.40.1        
#> [125] png_0.1-8                   parallel_4.4.2             
#> [127] ggh4x_0.2.8                 pkgdown_2.1.1              
#> [129] latticeExtra_0.6-30         jpeg_0.1-10                
#> [131] bitops_1.0-9                ggstar_1.0.4               
#> [133] pwalign_1.0.0               mvtnorm_1.3-2              
#> [135] tidytree_0.4.6              scales_1.3.0               
#> [137] crayon_1.5.3                rlang_1.1.4                
#> [139] multcomp_1.4-26

References

Tengeler, A.C., Dam, S.A., Wiesmann, M. et al. Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome 8, 44 (2020). https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00816-x